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4.5.1 Direct Methods

The linear equations given by Eq. (4.5.4) have a block tridiagonal structure and
can be written in vector-matrix form given by Eq. (4.4.29). However, in this
case, due to slightly different notation, we write Eq. (4.4.29) again,

AU=F (4.5.6)

Here A a denotes the coefficient matrix same as that defined in Eq. (4.4.30),
but with different indices,

Ay Cq
By Ay Cs

A= B; A; C; (4.5.7)

By 1 A1 Cja
By Aj

and with A;, B; and C; denoting /-dimensional matrices and I; denoting the
identity matrix of order I

]. _91-
—@; 1 —O;
A= s i (4.5.8a)
—0; 1
B; =Cj = —8,I (4.5.8b)

In Eq. (4.5.6), U and F are 3-dimensional compound vectors (i.e., vectors
whose components are I-dimensional vectors) and are defined by

Uy uy,j £
Uo U2 j Fo
U= |, w=|" |, F=|"1, (4.5.9)
Ug 4 Uy, j Ej
Uy Uy ; Fy

where

= fi+b0w;  2<5<J-1 (4.5.10)
Fyp=[f,+bw;+04u;.,
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U(), i
i OJ | u1,0 Uy, J+1
FQJ ' . u2,0 U2 j+1
~j = . 1 Qy] = . 7 ?;LO = ¢ ? T—ZLJ-‘FI = : (4'5'11)
: 0 : :
Fr ; us,0 UL, J+1
UT41,j |

In Eq. (4.5.11) Ij comes from the right-hand side of Eq. (4.5.4b); once the
function f(z,y) in the Poisson equation is given, fj is known. The column vector
w; represents the boundary conditions at 7 = 0 and ¢ = [ + 1, and ¥ and y;
represent the boundary conditions at 7 =0 and j = J + 1, respectively. Note
that w;; =0 for 2 <i < T -1, wy; = ugy, and wr; = uryy ;. Of course, all of
the u; ; which enter into Eq. (4.5.10) are known quantities determined from the
boundary conditions.

In some problems all of the boundary conditions may not be given in terms
of u, but are given some in terms of its derivatives. In those cases, the structure
of the A;, B;, C; matrices in the coeflicient matrix A can change. To illustrate,
consider Problem 4.5 with the boundary conditions are of the form

8
i=0, 2=p i=I+1, u=0 (4.5.12a)
or
=0, 2y G=adl 0 (4.5.12b)
j ? ay ? J )

The boundary conditions at ¢ = 0 and 7 = 0 may be approximated to first order
by the forward difference formula (4.3.9) by

ug —up =0 (4.5.13)
or to second order, requiring
u(¢) = ap + a1¢ + az(”

to satisfy u(o) = ug, u{A¢) = u; and u(2A() = ug, and then setting du(0)/d( =
a1 = 0. This procedure yields

4 1
ugy — g’lﬂ_ 4 guz =0 (4514)
The choice given by Eq. (4.5.14) allows the boundary conditions at ¢ = 0 and

j =0 to be written in the form

4 1
1 =0, ug,; — gul,j -+ §U2,j =G 1l<j5<J (4.5.15&)
. 4 1 :
7=0, wujp— gui)l —+ gui,g =1 LEZixd (4.5.15}3)

For i = 1, Eq. (4.5.4b) becomes
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uyj ~ Oz(uz,; + uo ) — Oy(urjp1 +urj-1) = =62 f1; = Fi
and, with Eq. (4.5.15a), it can be written as

1
uy g — Oz (uzj + FULG ~ guz,j) —Oy(uy jr1 +urj-1) = Fij

or as

3 3
For i = I, Eq. (4.5.4b) becomes

4 2 .
(1 — —Qx) ul,j—-9$u2,j—9y(u1,j+1+u1,j-1) =Fh,; 2<;<J-1 (4.5.16a)

ug; — O0p(ury1j +ur—15) = Oy(urip1 +urj_1) = Frj
and with the boundary condition at ¢ = I + 1, that is,
tury1,; =90 (4.5.15¢)
Eq. (4.5.4b) at i = I can be written as
ur; — Ootr_15— Oy(urjp1 +urij1)=Fr; 22j<J-1 (4.5.16b)
For j =1, Eq. {4.5.4b) becomes
i1 — Oz (Ui + wi—1,1) — Oy(uso + uio) = Fin

and, with Eq. (4.5.15b), can be written as

4 1
U;,1 — 9r(“z‘+1,1 + ui—-l,l) - 9y(ui,2 + gui,l - 5%‘,2) = Fj1
Or as

4 2
(1 — gf)y) Ug 1 —Bx(uiﬂ,l +u¢_1,1)— gﬁyui,g = Fi,l, 2<i<1—-1 (4.5.16¢)

For j = J, Eq. (4.5.4b) becomes
g,y — Op(Uig1,g + ui—1,0) — Oy(ug g1 +usg-1) = Fi g
and with the boundary condition at 7 = J + 1, that is,
i gy1 =0 (4.5.15d)
Eq. (4.5.4b) at j = J can be written as
i g — Oz (Uir1,0 +ui—1,7) — Oy(us 1) = Fiy, 2<i<TI-1 (4.5.16d)

Ati=j =1, Eq. (4.5.4b), with the relations given by Eqs. (4.5.15a,b), becomes

4 4 2 2
(1 - ggx -- §9y) U1 — gHmUQ,l - gf)yul,z = Fi (4.5.17&)
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At i=1, j=J, Eq. (4.5.4b), with the relations given by Egs. (4.5.15a,d) be-
comes

4 2
(1 o 591) UuyJ — § U2 — Hy'LL]_’Jfl = Fl’_] (4.5.17b)

At i =1, =1, Eq. (4.5.4b), with the relations given by Eqs. (4.5.15b,c) be-
comes

4 2
(1 — §9y) urq — O:r,ul—l,l — ggy'u172 = Frq (4.5.17¢)

At i=1, j=J, Eq. (4.5.4b), with the relations given by Egs. (4.5.15¢,d) be-
comes
uy g~ QIU,[_LJ = 9yu[,J_1 - F],‘] (4.5.17d)

The matrices Aj, B; and C; in the coefficient matrix A become
2
ay —30s

A = . : : (4.5.18a)
—0z a3
ai 30
Aj = : . . 2 g —1 (4.5.18b)
-0, 1
a} —30;
-6, 1 -8,
-0, 1 -8,
Ay = : 3 = (4.5.18¢)
-6, 1 -0,
Bj = —0yI7 2<3<J (4.5.18d)
C1=-2%6,I; (4.5.18¢)
Cj = =0yl 2<73<J-1 (4.5.18f)
where
4
a; =1 :81 — g-ﬁy, a; =1-— 569’ az =1-— %Hx (4.5.19)
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Whether the boundary conditions are given in terms of u or its derivatives,
the solution of Eq. (4.5.6) can be obtained by the block-elimination method
as discussed in subsection 4.4.3 or Gauss’ elimination method discussed below.
Since the coefficient matrix A has large blocks of zero elements, it is more ef-
ficient to solve Eq. (4.5.6) with the block-elimination method than with the
Gaussian elimination method. As we shall see shortly, however, it is still neces-
sary to make partial use of the Gaussian elimination in the block elimination
for the solution of elliptic equations.

The block elimination method for this problem is identical to the one dis-
cussed before except for the difference of the indices in the coefficient matrix,
Eq. (4.4.30). So for convenience the two steps in this method are repeated below.

In the first step of the forward sweep, I; and A; are computed from

Ay = A (4.5.20a)
IjA; 1 = B; F=23,; uad (4.5.20b)
A]‘ = Aj —FjCj_l j= 2,3,J (4520(3)

In the second part of the forward sweep, the w; are computed from

wy = El (4.5213)

w; = F; — ljw;_; 2<ji<J (4.5.21b)

In the backward sweep, the y; are computed from

Ajuy=w, (4.5.222)

Aju; =w; — Cyusyy  j=J-1,J-2,...,1 (4.5.22b)

In the application of the block elimination method to solve the Laplace
difference equations, the A; matrix in Eqs. (4.5.20b) and (4.5.22) is a full matrix
of order I and is not a tridiagonal matrix except for J = 1. Thus, the inversion
of 4A; is not a trivial task. On the other hand, in the application of this method
to solve the difference equations for boundary layers (Chapter 7), the order of
A; matrix is generally small. For this reason, the inversion of the A; matrix is
relatively simple.

To solve Egs. (4.5.20b) and (4.5.22), we use the Gaussian elimination method
and write both equations in the form

Az =b (4.5.23)

Here A = [a;;] is a square matrix of order n, that is,
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a1l a12 - adij - - Qln
azl a2 - - Q2
A= (4.5.24)
Qi1 @2 * Q35 Qin
anl An2 - Anj - " Qpn

and z = (x1,...,24...,2,) and b= (by,...,b;,... ,bp)T with T denoting the
transpose. According to the Gaussian elimination method, the elements of x are
given by

1 i1 = 1 .
i G bV = 3 afi Vs, i=n,.l (4.5.25)
) j=i+1
where
i) k=1,....n—1
k—1 ,
(kY  (k=1) Qi (k—1) de=ld L
G =% T wk—n% i=k+1,...,n (4.5.262)
Tk (0) _
2D E=1;.i0sm=1
b = ot - %ﬁ—l)bi(ck_l): i=k+1l...,n (4.5.26b)
U, B = b,

Table 4.2 gives the FORTRAN listing based an the Gaussian elimination. Thus,
the block-elimination method together with the Gaussian elimination method

Table 4.2. FORTRAN Listing of Subroutine GAUSS

SUBROUTINE GAUSS (N,M,A,B)
DIMENSION A{100,100),B(100,100)
DO 100 K = 1,N-1

KP =K+1
DO 100 I = KP,N
R = A{1,K)/A(K,K)
DO 200 J = KP,N
200  A(I,Jd) = A(1,J) - R*A(K,J)
DO 100 J =1,M
100 B(I,J) = B(I,J) - R*B(K,J)
DO 300 K = 1,M
B(N,K) = B(N,X)/A(N,N)
DO 300 I = N-1,1,-1
1P =1+1
DO 400 J = IP,N
400 B(I,K) = B(I,K) - A(I,J)*B(J,K)
300 B(I,K) = B(I,K)/A(I,I)
RETURN

END
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can be used to solve Eq. (4.5.6). A listing of a subroutine for this purpose is
given in Table 4.3 for A;, B; and C; matrices given by Eqgs. (4.5.8a,b).

To use the subroutine in Table 4.3, the number of grid points in the z
and y directions must be specified by I (=1I) and J (= JJ), respectively, the
coefficients 8, (=TX), 6, (=TY) in Eq. (4.5.4a), and the compound vector F
(=F) on the right-hand side of Eq (4.5.6). The compound vector F is obtained
from Eq (4.5.10) once the forcing function {f(z, y) in Egs. (4.5.1)] is defined and
the boundary conditions on the four sides of the rectangle are given.

Example 4.5. Compute the temperature distribution in a square region of sides unity
subject to the following boundary conditions

T(z,0) =T(z,1) =0, T(0,y) =sinwmy and 7T(l,y)=¢€"sinny
by solving the heat condition equation,

o1 o
ox?  Jy?

=0 0<z y=1

Compare your solutions with the analytical solution at x = 0.2, 0.5 and 0.9.
T(z,y) =€ “sinny

Take Az = Ay = 1/10.

Solution. Table F4.10 presents a comparison between the numerical and analytical results
at £ = 0.2, 0.5 and 0.9 as a function of y. Appendix A contains the computer program.

Table E4.10. Comparison of FDS and AS

x=0.2 x=0.5 x=0.9

y FDS AS FDS AS FDS AS

0.1 0.58693 0.57924 1.504 1.48652 5.23614 5.22301
0.2 1.1164 1.10178 2.86078 2.62753 9.95973 9.93476
0.3 1.53659 1.51647 3.93753 3.89176 13.70839 13.67403
0.4 1.80637 1.78271 4.62884 4,57504 6.11517 16.07478
0.5 1.89933 1.87446 4.86705 4.81048 16.9445 16.90203
0.6 1.80637 1.78271 4.62884 4,57504 16.11517 16.07478
0.7 1.53659 1.51647 3.93753 3.89176 13.70838 13.67403
0.8 1.1164 1.10178 2.86078 2.82753 9.95972 9.93476
0.9 0.58693 0.57924 1.504 1.48652 5.23614 5.22301

4.5.2 Iterative Methods

Iterative solutions which may be based on point or block iterations are more
popular than the direct methods used to solve the Laplace difference equations.
Again the large number of zero elements in the coefficient matrix A greatly
reduces the computational effort required in each iteration. However, care must



